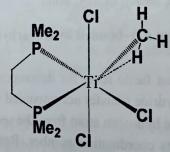
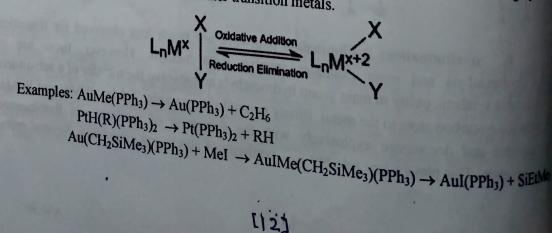

Transition Metal - Aryl & Alkyl Complexes


benzyls and neopentyls, especially of titanium and tantalum are known to decompose by this mechanism.

Another mechanism of α -elimination involves "agnostic" hydrogens (C-H-M), which are actually covalently bonded both to a carbon atom and a transition metal atom.



Crystallographic analysis shows that, when a methyl group is attached to a d^o-metal centre, having less than 18-electron environment, one of the C-H bonds of that methyl group gets distorted to the extent that it gets into the bonding distance with the metal. Such strong interactions between metal and C-H group are known to play key role towards cyclometallation and alkene polymerization reactions.

iii. γ -climination: It has been observed for some main group hydrocarbyls, but it's rare in transition metal chemistry.

2. Intermolecular reductive elimination: It is reverse of oxidative addition reaction. Both the oxidation state and coordination number of the central metal are reduced by two units. Hence, this pathway would be confined to metals with stable oxidation states differing by two units, which is more common for the later transition metals.

Totansition Metal - ATYL & ALKYL Complexes.

 Homolytic fission of M-C bond. These are common pathways for decomposition of main group alkyls, but several transition metal alkyls also follow it.

 $Zn(CH_2Ph)_4 \rightarrow Zr + 2Ph-CH_2CH_2Ph$

Characteristic Reactions: Reactivity of σ -bonded transition metal organometallics depend upon the nature of the metal as well as on the other ligands present.

 Metal-Carbon Bond Cleavage: Transition metal alkyls are weakly nucleophilic and decompose in presence of proton. Nucleophilic reaction on alkyls in oxidative conditions will also come in this category. Example:

Ti Me₄ + 4 MeCOOH $\xrightarrow{\text{ROR}}$ Ti (O₂CMe)₄ + 4CH₄ Zr (CH₂ Si Me₃)₄+4 2,6-C₆ H₅ Pr₂OH \rightarrow Zr (2,6-Pr₂ C₆H₅O)₄ + 4 Si Me₄ Cr Ph₃ (THF)₈ + Acetyl Acetone \rightarrow Cr (Acac)₃ +3 C₆H₆+ n THF Cis-[PtCl₂(PEt₃)₂] $\xleftarrow{2HCl}_{-2CH_4}$ Cis-Pt Me₂ (PEt₃)₂ $\xrightarrow{\text{HCl}}_{-CH_4}$ Cis-[Pt Cl (Me)(PEt)₂] MnMe(CO)₅ + Br₂ \rightarrow MeBr + MnBr (CO)₅ Ti Me₄ + 4I₂ \rightarrow 4 MeI + Ti I₄ CoMe₂ (PMe₃)₃ + X₂ \rightarrow CoX (Me) (PMe₃)₃ + MeX

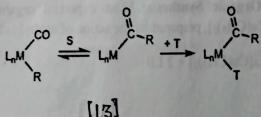
2. Elimination of alkene with proton transfer (β -Decomposition): Pt Cl (CH₂ CH₃) (PEt₃)₂ \rightarrow Pt H Cl (PEt₃)₂ + C₂H₄ Cu(CH₂CH₂CH₂CH₃)(PBuⁿ₃) \rightarrow C₂H₅ CH = CH₂ +Cu H (PBuⁿ₃) MnCH₂CH₃(CO)₅ + Ph₃C⁺BF₄ \rightarrow Ph₃CH + [(CO)₅Mn (C₂H₄)](BF₄)

3. Replacement reactions:

[Pd Me₂ (bipy] + 2 C₃H₇ I \rightarrow [Pd (C₃H₇)₂ (bipy)] +2 CH₃ I M (CH₂Ph)₄ + 2 EtOH \rightarrow M (CH₂ Ph)₂ (OEt)₂ + 2PhCH₃ (M = Ti or Zr) Zr Me₂ (η ²C₃H₅)₂ + MeOH \rightarrow Zr Me (OMe) (η ²C₃H₅)₂+CH₄

4. Adduct Formation:

 $[MnR_2]_n$ +TMEDA \rightarrow MnR₂(TMEDA) R=CH₂CMe₃,CH₂Si Me₃orCH₂(Me₂ Ph)


Ti Me₂ + dmpe \rightarrow Ti Me₂ (dmpe)₂ Ta Me₅ + dme \rightarrow Ta Me₅ (dme) [Mn (CH₂ Si Me₃)₂] +2 Li CH₂ Si Me₃ \rightarrow Li₂ [Mn (CH₂ Si Me₃)₄]

5. Redistribution:

Cis-Pt Me₂ (PEt₃)₂+Cis Pt Cl₂(PEt₃)₂ \rightarrow 2 Cis-Pt Cl (Me) (PEt₃)₂

6. Insertion Reactions: Unsaturated ligands insert itself into M-C bond giving new products.

i. CO insertion:

AK.P